Komunitas Penggemar Catur Seluruh Indonesia




Penulis Topik: Catur : mendalami teori catur menggunakan statistika  (Dibaca 7234 kali)

hddstudio

  • Newbie
  • *
  • Tulisan: 11
    • Lihat Profil
    • PT HDD Studio Data Recovery
Catur : mendalami teori catur menggunakan statistika
« pada: September 25, 2010, 03:15:47 PM »
Dalam buku Hindu Raja Neo Klasik (Ir. Sobandi Sachri, Penerbit Angkasa 1984) digunakan statistik untuk menilai kualitas langkah sebuah varian pembukaan catur.

Yang dibahas dalam buku itu ialah mengenai urutan langkah sbb :

1. d4 Kf6 2. c4 g6 3. Kc3 g6 4. e4 d6 5. Kf3 0-0 6. Ge2 e5

Perhatikan diagram :



Posisi dalam diagram ini oleh Ir. Sobandi Sachri, disebut tabiya (battle array) sistem pertahanan Hindu Raja varian Neo Klasik (Saia sendiri cenderung menyukai singkatan KID - King's Indian Defence) atau oleh mendiang Dr. Max Euwe diberi nama lebih panjang : Pertahanan Hindia timur dengan pembentukan pusat dipercepat.

Dengan langkah terakhirnya (6....e5) hitam menantang putih untuk membuat keputusan di pusat papan terutama bidak d4. Bidak itu dapat memilih antara memukul lawannya di e5, maju ke petak d5 membekukan pusat papan, dijaga oleh Gajah dengan langkah 7. Ge3 atau dibiarkan saja menunggu jawaban hitam selanjutnya seraya mempertahankan ketegangan di pusat papan.

Dari praktek para ahli, untuk langkah ke-7, putih memiliki kemungkinan sbb :

7. 0-0 (menunggu pilihan hitam) jalur utama
7. dxe5 (melikuidasi pusat papan) jalur tukar
7. d5 (membekukan pusat papan) dikenal sebagai jalur Petrosyan
7. Ge3 (melindungi bidak d4) dikenal sebagai jalur Reshevsky
7. langkah lainnya

Dari kemungkinan-kemungkinan di atas, 7. 0-0 dijadikan jalur utama dengan alasan sebagai berikut :

a) menurut ChessBase 10 yang mengumpulkan partai-partai Hindu Raja, dari 45,723 partai (N = sampel) yang mencapai posisi diagram di atas, langkah 7.0-0 muncul dalam 27,548 partai (60.2%) sehingga diperoleh kesimpulan, langkah ini merupakan langkah yang paling banyak dipilih oleh para ahli dalam pertandingan.
b) dari 27,548 partai tersebut, pemegang buah putih memperoleh persentase kemenangan 56.8% sehingga jalur ini diasumsikan memberi harapan menang lebih baik untuk buah putih.

Perhatikan data statistik berikut :



Kalau melihat tingkat tertinggi persentase kemenangan putih, seharusnya menurut tabel di atas, kita memilih 7. Gc1-e3 sebagai jalur utama, tapi karena jumlah sampelnya yang sangat kecil (hanya 5,246 partai) dibanding jumlah sampel utama (45,723 partai) maka muncul keberatan untuk itu.


Daftar pustaka
;

1. Barden, Wade, O' Connell, The King's Indian Defence, BT Batsford London 1974
2. Nunn, Burgess, The New Classical King's Indian Defence, BT Batsford London 1997
3. Nunn, The Classical King's Indian, BT Batsford London 1990
4. Galagher, The King's Indian for The Attacking Player, BT Batsford London 1997
5. Geller, Staroindiskaya shakhzhita, Fitzkultura i Sport, Moskow 1981
6. Keene, Kasparov, Kasparov on King's Indian, BT Batsford London 1993
7. Krnic, Encyclopaedia of Chess Openings volume E, 4 edition, Chess Informant Beograd 2006
8. Chessbase Team, Chessbase Mega Database 2010, Hamburg 2010
9. Chessbase Team, Chessbase 11 BETA, Hamburg 2010

hddstudio

  • Newbie
  • *
  • Tulisan: 11
    • Lihat Profil
    • PT HDD Studio Data Recovery
Re:Catur : mendalami teori catur menggunakan statistika
« Jawab #1 pada: September 25, 2010, 04:12:13 PM »
1. d4 Kf6 2. c4 g6 3. Kc3 Gg7 4. e4 d6 5. Kf3 0-0 6. Ge2 e5 7. 0-0 Kc6 8. d5 Ke7 9. Ke1 Kd7 10. Kd3 f5 11. Gd2 Kf6 12. f3 f4 13. c5 g5 14. Bc1 Kg6 15 cxd6 cxd6 16. Kb5 Ke8 17. Mc2 Bf7 18. a4 h5

sampailah kita pada diagram 2 berikut :



diagram 2

Urutan langkah di atas disebut jalur normal (JN) oleh Ir. Sobandi Sachri, kemudian melengkapi kode HR-0 sebagai singkatan Hindu Raja Neo Klasik. Penamaan lengkap jalur normal ialah dalam klasifikasi Hindu Raja yang disusun oleh beliau menjadi JN-HR-0.

Pihak putih maupun pihak hitam tentu saja tidak harus mengikuti jalur normal ini, sehingga dalam tiap urutan langkah dalam jalur normal tersebut akan terjadi penyimpangan. Penyimpangan yang dilakukan oleh pihak putih maupun hitam ini dikelompokkan dalam sebuah Jalur Bias (JB)

Bentuk sebuah jalur bias dapat digambarkan sebagai percabangan dan ranting pohon seperti di bawah ini :

1. d4 Kf6 2. c4 g6 3. Kc3 Gg7 4. e4 d6 5. Kf3 0-0 6. Ge2 e5 7. 0-0

- 7....Kc6 Hindu Raja Neo Klasik
- 7....Kbd7 Hindu Raja Klasik

------7....Kc6 8. d5
------------------8. Ge3
------------------8. Ge3 Be8 9. d5
------------------8. Ge3 Be8 9. dxe5
------------------8. Ge3 Kg4 9. Gg5
------------------8. dxe5 dxe5 9. Mc2
------------------8. dxe5 dxe5 9. Mxd8

------7....Kc6 8. d5
------------------8......Kb8
------------------8. ... Ke7 9. Ke1
---------------------------------9. Kd2 a5
-----------------------------------------------10. a3 Kd7 11. Bb1
-----------------------------------------------10. b3 Gd7 11.f3
---------------------------------9. Gd2
---------------------------------9. Ge3
---------------------------------9. Ge3 f5 10. f3 f4 11. Gf2 g5


dan seterusnya sehingga membentuk demikian banyak jalur bias dan alihan yang tampak seperti pohon lengkap dengan tangkai, ranting dan daunnya. Dengan semakin lengkapnya seluruh jalur bias dan alihan yang diperoleh dari praktek, maka dapat disusun sebuah teori pembukaan lengkap dari langkah awal sampai dengan bangunan tertentu seperti layaknya pada diagram 2 di atas guna mempercepat waktu pertandingan dan lebih berkonsentrasi di babak tengah yang rumit.

hddstudio

  • Newbie
  • *
  • Tulisan: 11
    • Lihat Profil
    • PT HDD Studio Data Recovery
Re:Catur : mendalami teori catur menggunakan statistika
« Jawab #2 pada: September 25, 2010, 05:26:10 PM »
Contoh penggunaan metode statistik lainnya ialah teori pembukaan mengenai salah satu Pertahanan Sisilia varian Najdorf jalur bidak beracun



diagram 3

Perhatikan diagram 3 di atas (tersusun setelah urutan langkah 1. e4 c5 2. Kf3 d6 3. d4 cxd4 4. Kxd4 Kf6 5. Kc3 a6 6. Gg5 e6 7. f4 Mb6 8. Md2 Mxb2 9. Bb1 Ma3 10. f5 Kc6 11. fxe6 fxe6 12. Kxc6 bxc6 13. e5 Kd5 14. Kxd5 cxd5 15. Ge2 dxe5 16. 0-0 Ba7 17. c4 Mc5+ 18. Rh1 d4)

Bangunan yang ruwet, dan sangat kompleks ini, boleh anda percaya atau tidak masih merupakan "teori' dan biasanya dicapai oleh kedua pemain hanya dalam waktu 2 menit dalam pertandingan catur resmi. Kecepatan menyusun bangunan seperti diagram di atas bertujuan untuk menghemat waktu dalam tahap pembukaan agar dapat menggunakannya lebih efisien dalam babak tengah yang kompleks seperti tampak pada diagram 3 di atas.

Tercatat ada 14 partai yang mencapai bangunan diagram di atas. Masing-masing pemain memilih salah satu dari tiga kemungkinan di bawah ini :

1) 19. Gh5+ (11 partai)
2) 19. Mc2 (2 partai)
3) 19. Gd1 (1 partai)


Sebagai catatan : Tidak semua langkah di atas harus diikuti oleh peminat teori catur, namun apa yang ditampilkan oleh statistik membuktikan bahwa 19. Gh5+ paling populer dalam bangunan termaksud.

Komunitas Penggemar Catur Seluruh Indonesia

Re:Catur : mendalami teori catur menggunakan statistika
« Jawab #2 pada: September 25, 2010, 05:26:10 PM »


 



Copyright © Komunitas Penggemar Catur Seluruh Indonesia